

What we have learned so far about kicking the reservoir?

- Using SAHA (vorinostat), panobinostat and romidepsin activates HIV from latency
- Increases HIV RNA expression intracellularly
- Can be associated with transient HIV viremia
- Subsequent treatments are less effective
- It really does not decrease the reservoir
- If activating alone does not eliminate the reservoir, do you really need to do this? Or stopping therapy is enough?

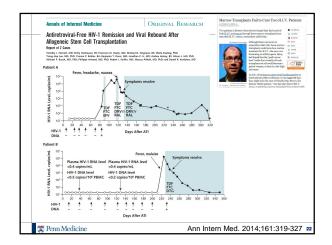
🞇 Penn Medicine

Eliminating the reservoir

- Unspecific (kill everybody)
 Graft vs host disease (like Timothy Brown or the Boston patients)
 ATG effects on reservoir in HIV+ renal transplant patients (Deirdre Sawinski)

• Specific (kill the reservoir)

- Specific (kill the reservoir)


 Boost Cellular immunity

 o Improving CD8 HIV responses (T cell vaccines)
 Blocking the PD-1 PD-L1 pathway
 Gene therapy (reprogrammed CD8 cells and CARs)
 Improving Innate immunity
 Humoral immunity
 Using Neutralizing antibodies

🐺 Penn Medicine

WORLD U.S. N.Y. / RESIDT BUSINESS AUTOS	TECHNOLOGY SCIENCE HEALTH SPORTS OFIND		
		(ar	
Search Health	De Research Pitress & N		L.
Sample Type	1 Reservoirs After Allogeneic HSCT and B Level	efore ART Interruption Total Cells Tested, n	
Platent July 1 2013 © 47 Commens Trable 1. Studies to Assess HIV-1 Sample Type Patient A (4.3 y after HSCT)	Level	Total Cells Tested, n	Total Wells, n
Platine July 1 2013 10 47 Commens <i>Tieble 1.</i> Studies to Assess HIV-1 Sample Type Patient A (4.3 y after HSCT) Total HV-1 PENIC DNA	Level	Total Cells Tested, n 26 × 10 ⁶ PBMCs	Positive Wells, n Total Wells, n 0/42
Platent July 1 2013 © 47 Commens Trable 1. Studies to Assess HIV-1 Sample Type Patient A (4.3 y after HSCT)	Level	Total Cells Tested, n	Total Wells, n
Plane Tuby 1 311 @ 4 Commen Table 1. Studies to Assess HIV-1 Sample Type Patient A (43 yafter HSCT) Total HIV-1 PANC DRA Infectious Viso by vial augrowth are Planete B (24 yafter HSCT)	 <0.12 copies/10⁶ cels say <0.007 IUPM cells* 	Total Cells Tested, n 26 × 10 ⁶ PBMCs 150 × 10 ⁶ CD4 ⁺ T cells	Total Wells, n 0/42 0/30
Planke 7.00 1 3117 @ 4 Commen Table 1. Studies to Assess HIV-1 Sample Type Palent A (3 y after HSC1) Total HH-1 BIOK CINA Infectious virus by Viral outgrowth ass	 Level <0.12 copies/10⁶ cells say <0.007 IUP/A cells* <0.13 copies/10⁶ cells 	Total Cells Tested, n 26 × 10 ⁶ PBMCs	Total Wells, n 0/42

EpiStem: Allogeneic Stem Cell **Transplantation in HIV-1 Infected Pts**

- EpiStem Consortium: prospective, observational, cohort • Eligibility: HIV-infected pts requiring allogeneic stem cell
- transplantation for a life-threatening hematologic condition Overall goal: understand the biological determinants behind

🐺 Penn Medicine

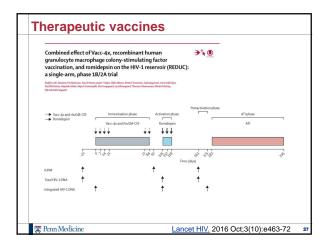
- HIV-1 reservoir reduction/eradication by allogeneic stem cell transplantation
- Thus far, 24 HIV+ pts with diverse hematologic malignancies have been registered,15 have received stem cell transplantation and remain on ART

Wensing AM, et al. AIDS 2016. Abstract THAA0105.

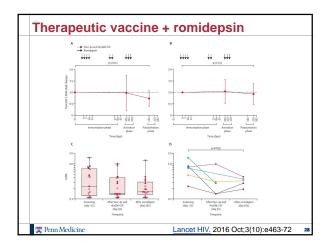
reservoirs to low levels in	• •	,	• •
 Investigators hypothesize reservoir effect 	viral clearance can	be attributed to	graft vs HIV-1
Outcome	Pt 1	Pt 3	Pt 19
Hematologic malignancy	Burkitt NHL	NK NHL	AML
Conditioning strategy	Myoablative	Reduced intensity	Reduced intensity
Donor type	HLA-mismatched	HLA-MRD (10/10)	HLA-MUD (10/10)
Donor CCR5 status	WT	WT	Δ32
Pt chimera status	0.2% BM/0.1% PB	Full	Full
GvHD	No	Yes	Yes
HIV-1 RNA, copies/mL	5	Undetectable	
Total HIV-1 DNA, copies/106 CD4+	25	Undetectable	Undetectable
qVOA, IUPM	0.034	Undetectable	Undetectable
lleum (CD4+ cells)		Undetectable	Trace

EpiStem: ASCT Reduces HIV-1 Reservoirs

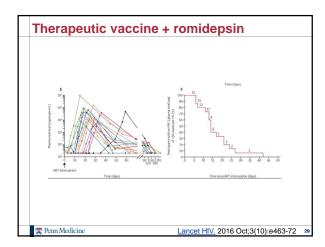
Location of	Age of			
Transplantation	Patient	Type of Cancer	Type of Graft	Outcome after Transplantation
Berlin†	40	Acute myeloid leukemia	HLA-matched unrelated	Alive after 7 yr, no viral rebound, no ART
Utrecht, the Netherlands‡	53	Myelodysplastic syndrome	Combined haploidentical bridge with umbilical-cord blood	Died from relapse of the myelodysplastic syndrome and pneumonia after 2 mo
Münster, Germanyj	51	Non-Hodgkin's lymphoma	HLA-mismatched unrelated	Died from infection after 4 mo
Essen, Germany¶	30	Non-Hodgkin's lymphoma	HLA-matched unrelated	CXCR4-tropic HIV-1 rebound, died from relapse of non-Hodgkin's lymphoma after 12 mo
Minneapolis§	12	Acute lymphoblastic leukemia	Umbilical-cord blood	Died from GVHD after 3 mo
Santiago, Chile§	46	Non-Hodgkin's lymphoma	HLA-matched related	Died from pneumonia shortly afterward
Barcelona§	37	Non-Hodgkin's lymphoma	Combined haploidentical bridge with umbilical-cord blood	Died from relapse of non-Hodgkin's lymphoma after 3 mo
Data are from Hütter Data are from Kwon e	et al. ¹ et al. ³ onal comm	py, and GVHD graft-versus-host unication with the transplantation		

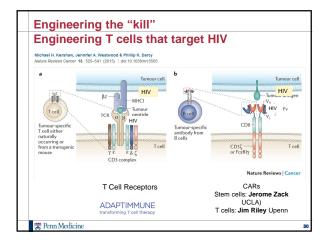


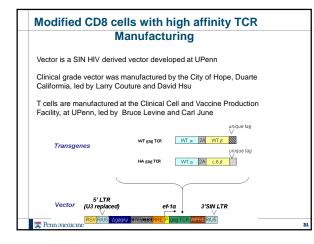
What have we learned from these cases

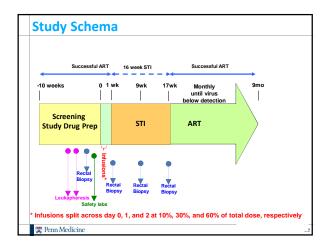

• It is possible to cure HIV

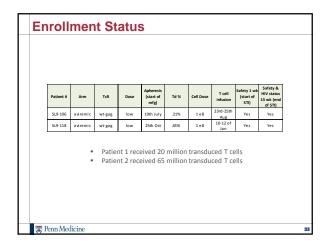
🐺 Penn Medicine

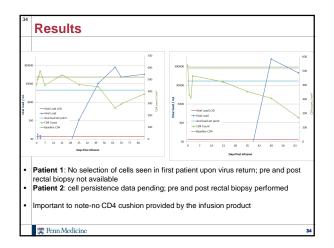

- Very difficult (The score so far is 1 of 39,000000)
- Aggressive strategies to remove the reservoir (total body irradiation+Chemo+Allo BMT with GVHD) do not completely eliminate it
- Treating very very early neither...
- We may have to settle for functional cure







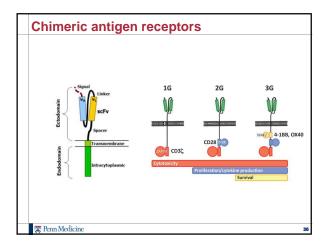




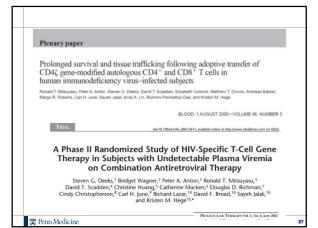
Plenary Paper

🐺 Penn Medicine

blood and and a second CLINICAL TRIALS AND OBSERVATIONS

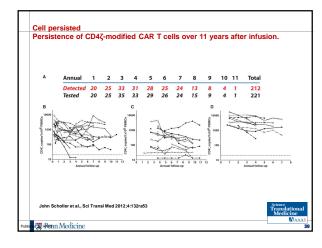

Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced ${\rm T}$ cells in myeloma and melanoma

Gerald P. Linette, ¹ Edward A. Stadfmauer,² Marcela V. Maus,² Aaron P. Rapopott, ³ Bruce L. Levine,² Lyndsey Emery,⁵ Leslie Litzy,² Adam Bagg,² Beatriz M. Carreno,¹ Patrick J. Cimno, ¹ Gwendolyn K. Binder-Scholl,⁴ Dominie P. Smethurst,⁴ Andrew B. Gerry, Nick J. Pumphrey, ⁴ Ann D. Bernett,⁴ Janona E. Brewer,⁴ Joseph Duses, ³ Jane Happer,⁵ Helen K. Tsyton-Martin,⁴ Bent K. Jakobsen,⁴⁵ Namir J. Hassan,⁵ Michael Kalos,² and Carl H. June²


The Target-mean link, Department of bardwordset, I weating of tabasets, menulosi, Bardwords, Bardwords, Carl H J, during and Carl H J, during and Carl H J, during and Carl H Maddis use Gance Conter, Department of Medicine, and Department of Pathology and Laboratory Medicine, University of Parenay international Conter, Department of Medicine, and Department of Pathology and Laboratory Medicine, University of Parenay international Conter, University of Maryland, Baltimore, MD, "Adaptimumae Lid, Philadelphia and Abingdon, United roote Lid, Abriggion, University of Maryland, Baltimore, MD, "Adaptimumae Lid, Philadelphia and Abingdon, United roote Lid, Abriggion, Tunking Kangdom St. Louis, MO; nia, Philadelphia, PA; ingdom; and

Clinical testing of engineered T cells expressing an affinity-enhanced TCR against HLA-A*01–restricted MAGE-A3.
 Clinical trials in patients with melanoma and myeloma
 First two patients developed cardiogenic shock and died.
 Autopsy revealed severe myocardial damage, and histopathological cardiogenic shock and histopathological

- analysis revealed T-cell infiltration No MAGE-A3 expression was detected in heart autopsy tissues •

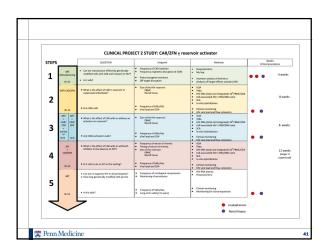

RESEARCH ARTICLE

ADOPTIVE T CELL TRANSFER

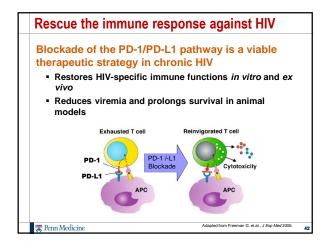
Decade-Long Safety and Function of Retroviral-Modified Chimeric Antigen Receptor T Cells

John Scholler,¹* Troy L. Brady,²* Gwendolyn Binder-Scholl,¹ Wei-Ting Hwang,² Gabriela Piesa,¹ Kristen M. Hege,⁸ Ashley N. Yogel,¹ Michael Kalos,¹ James L. Riley,² Steven G. Deeks,² Ronald T. Mitsuyasu,⁴ Wendy B. Bernstein,⁷ Naomi E. Aronson,^{7,8} Bruce L. Levine,¹ Frederic D. Bushman,²¹ Carl H. June¹¹

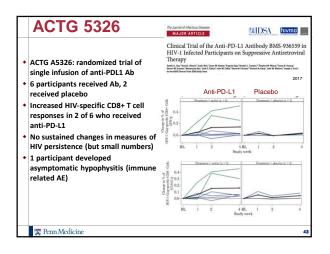
🐺 Penn Medicine

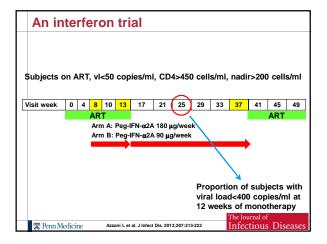

Upenn Delaney CAR proposal Objective

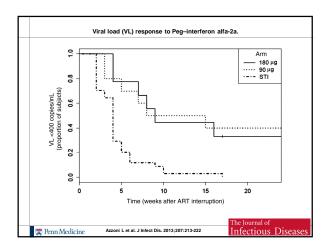
- To evaluate the safety, tolerability and antiviral activity of the combination of
 - a genetically modified HIV resistant (CCR5 edited by zinc finger nuclease) T cell with a CD4 chimeric antigen receptor
 - with or without an activator of the HIV reservoir in the setting of well controlled HIV infection

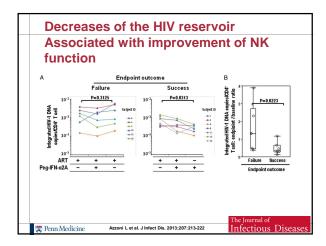

Hypothesis

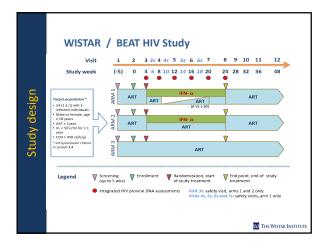

 The combination of a genetically engineered CAR T with an activator of the HIV reservoir will be safe, well tolerated and will delay or prevent the return of HIV viremia and may be associated with a decrease of the size of the HIV reservoir.


🕱 Penn Medicine

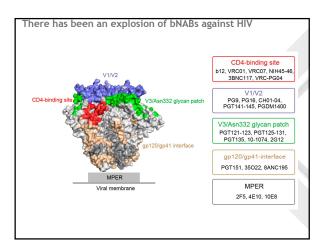


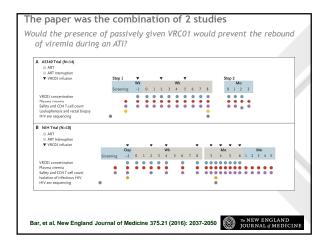




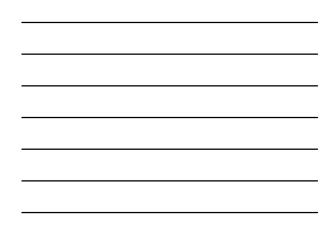


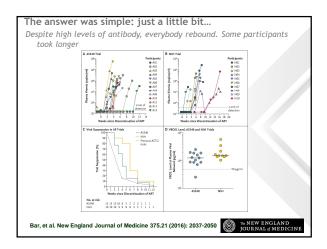






Improving the humoral Broadly neutralizing ar	
Several novel monoclonal antibod from cells from HIV-infected perso high potency with breadth of neutronic more results (content)	ns combine extraordinarily ralization
CLINICAL IMPLICATIONS OF BASIC RESEARCH	Antibodies advance the search for a cure
Elizabeth G. Pherister, Ph.G., differ Immunotherapy for HIV Infection	Efforts to make a prophylactic HIV succine have identified monodonal antibodies that powerfly suppress Viral replication. Studies in monkey show that these reagons effects dy treat HIV infection. Studies in Activities #24.0 Learnin #277
Robin A. Weiss, Ph.D.	LOUIS J. PIEER & STEVEN 6. BEERS does not necessarily mean that the disical benefit of these antibodies is released to the
n engl j med 370;4 january 23, 2014	Nature 303; November 14, 2013





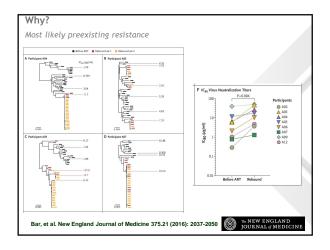
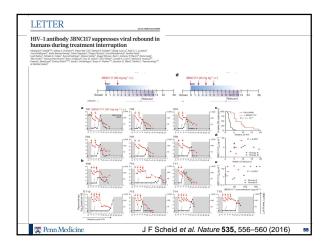
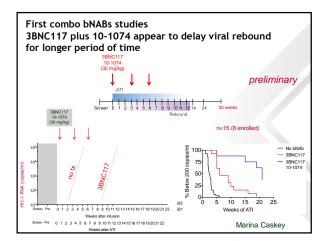
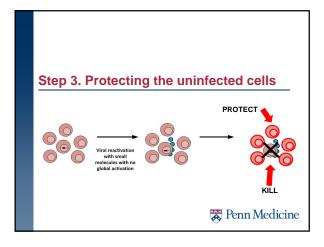
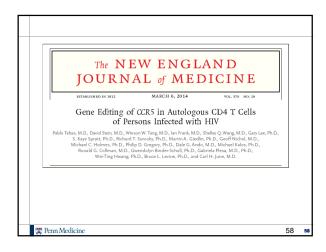


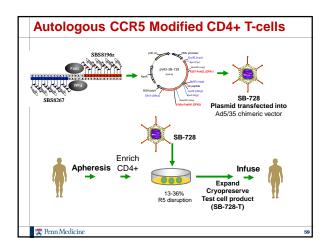
Table 1. Characteristics of the Participants at Baseline. ¹⁷			
Characteristic	A5340 Trial (N = 14)	NIH Trial (N=10)	Historical Control from Previous ACTG Studies (N=61)
Sex - no. (%)			
Male	14 (100)	8 (80)	53 (87)
Female	0	2 (20)	8 (13)
Age — yr			
Median (IQR)	38 (34-44)	51 (44-56)	44 (40-50)
Range	2752	33-59	27-73
Race or ethnic group — no. (%)†			
White non-Hispanic	6 (43)	6 (60)	41 (67)
Black non-Hispanic	6 (43)	3 (30)	13 (21)
Hispanic, regardless of race	2 (14)	1 (10)	7 (11)
Weight kg			
Median (IQR)	86 (77-102)	83 (78-89)	NA
Range	60-115	75-100	NA
HIV RNA — copies/no. (%)			
<50 copies/ml	13 (93)	10 (100)	61 (100)
≥50 copies/ml	1 (7)	0	0
CD4 T-cell count cells/mm3			
Median (IQR)	896 (579-1053)	724 (630-926)	852 (686-1048)
Range	470-1586	577-1616	350-1667
Nadir CD4 T-cell count — no. (%)			
<201 cells/mm ³	0	2 (20)	3 (5)
201-500 cells/mm3	12 (86)	3 (30)	39 (64)
>500 cells/mm ³	2 (14)	4 (40)	16 (26)
Unknown	0	1 (10)	3 (5)
Duration from initiation of ART to study entry — yr			
Median (IQR)	4.7 (3.8-6.0)	10.0 (7.7-13.3)	5.6 (4.1-6.7)
Range	2.7-14.5	7.0-17.2	0.7-16.8

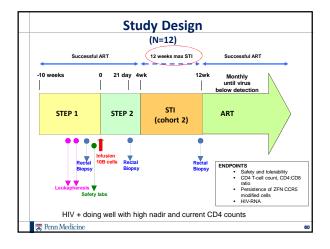


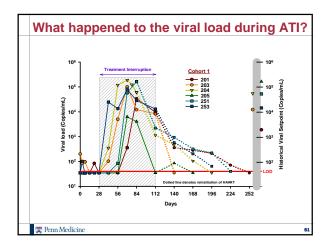


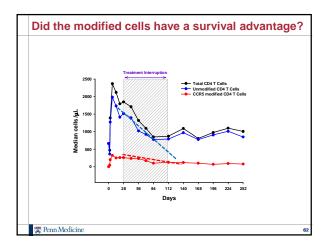


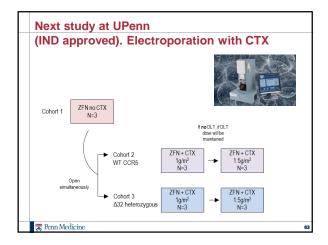


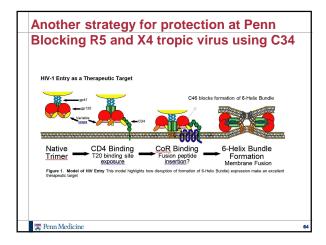


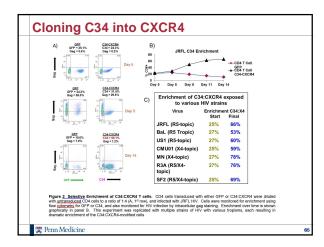


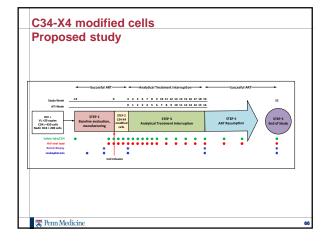














UPENN gene therapy	y collaborative	group	
Penn ACTU Larisa Zifchak/Amber/Jenna/Mar Joe Quinn Pablo Tebas Rob Roy MacGregor Jacoby Medical Center David Stein Angelo Seda	Penn CFAR k Clinical Core Ian Frank Immunology Core Jean Boyer Viral/Molecular core Farida Shaheen Ron Collman Rick Bushman Jim Hoxie		
U. Penn Abramson Inst. Carl June Bruce Levine Jim Riley Richard Carroll Gwen Binder Liz Veloso	ViRxSys Sangamo Adaptaminue Penn CTRC		
Renn Medicine	<u>NIH-NIAID</u>	РАСТС	67

